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Abstract

This paper describes the development and application of a general domain integral method to obtain J-values along
crack fronts in three-dimensional configurations of isotropic, functionally graded materials (FGMs). The present work
considers mode-I, linear-elastic response of cracked specimens subjected to thermomechanical loading, although the
domain integral formulation accommodates elastic—plastic behavior in FGMs. Finite element solutions and domain
integral J-values for a two-dimensional edge crack show good agreement with available analytical solutions for both
tension loading and temperature gradients. A displacement correlation technique provides pointwise stress-intensity
values along semi-elliptical surface cracks in FGMs for comparison with values derived from the proposed domain
integral. Numerical implementation and mesh refinement issues to maintain path independent J-values are explored.
The paper concludes with a parametric study that provides a set of stress-intensity factors for semi-elliptical surface
cracks covering a practical range of crack sizes, aspect ratios and material property gradations under tension, bending
and spatially-varying temperature loads.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

In structures composed of functionally graded materials (FGMs), the spatial variation of thermal and
mechanical properties influences strongly the response to loading (see Miyamoto et al., 1999, for a general
discussion). The presence of a functionally graded interface between two dissimilar materials, for example,
can lead to a relaxation in stresses associated with discontinuities at bi-material interfaces (Hasselman and
Youngblood, 1978; Lee and Erdogan, 1995; Ravichandran, 1995; Noda, 1999; Nomura et al., 2001).
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Because fracture remains a key failure mode of FGMs, successful application of these materials depends
upon an understanding of their fracture mechanics.

Eischen (1987) and Jin and Noda (1994) demonstrated the correspondence between near-tip fields in
homogeneous and nonhomogeneous bodies, which permits the application of standard analysis techniques
to cracks in FGMs. Delamination and cracking of FGMs at coating/substrate interfaces due to thermal
loads are the focus of investigations by Lee and Erdogan (1995), Bao and Cai (1997), Lee and Erdogan
(1998), Quian et al. (1998), and Gaudette et al. (2001). Takahashi et al. (1993) and Fujimoto and Noda
(2000, 2001) examine the influence of material gradation and thermal shock on crack propagation. Ravi-
chandran (1995), Jin and Batra (1996), Cai and Bao (1998), and Jin and Batra (1998), discuss residual
stresses, crack bridging, residual strength, fracture toughness and R-curve behavior. The edge crack in a
graded semi-infinite strip under thermal and mechanical loads is a case studied by Erdogan and Wu (1996),
Erdogan and Wu (1997), Gu and Asaro (1997), Noda (1997), and Noda and Jin (1993).

Analytical and numerical studies of fracture in FGMs reported in the literature focus primarily on plane
stress, plane strain and axisymmetric configurations (Delale and Erdogan, 1983; Eischen, 1987; Konda and
Erdogan, 1994; Dag et al., 1999; Li et al., 1999; Selvadurai, 2000). As understanding of the micromecha-
nical behavior of crack growth in FGMs progresses, computational techniques enable the analysis of
realistic configurations in three-dimensions for which analytical solutions do not exist. This work discusses
a formulation of the J-integral (Rice, 1968) for three-dimensional (3-D) models of FGMs with numerical
implementation using a domain integral approach. Applications focus on semi-elliptical surface cracks that
have received much attention for homogeneous materials, and that represent a common failure mechanism
in brittle materials and FGMs (Bahr et al., 1986; Kawasaki and Watanabe, 1993; Takahashi et al., 1993;
Kokini et al., 1996).

Techniques to obtain stress-intensity factors in components made of homogeneous and nonhomo-
geneous materials include the displacement correlation technique (DCT) (Shih et al., 1976; Kim and
Paulino, 2002a), the modified crack-closure integral (Rybicki and Kanninen, 1977; Kim and Paulino,
2002b), the interaction integral (Yau et al., 1980) and stress correlation (Raju and Newman, 1979). For
nonlinear behavior, the domain-integral technique (Li et al., 1985) based on the J-integral (Rice, 1968)
remains (strictly) valid for deformation plasticity and approximately valid for incremental plasticity. The
current study considers only linear-elastic behavior.

The next section examines the finite element analysis of uncracked bodies with smoothly-graded material
properties under thermomechanical loads, and verifies the numerical techniques by comparison with
published analytical solutions. A general, and numerically convenient, formulation of the domain integral
for nonhomogeneous materials and quasi-static thermomechanical loads is then developed, followed by a
description of the numerical evaluation in a finite-element setting. The literature provides examples to verify
this technique for two-dimensional (2-D) geometries, and the DCT confirms new stress-intensity factors
derived here using the J-integral approach for 3-D configurations. The paper includes an initial parametric
study and discussion of K;-values calculated for a number of semi-elliptical, surface-crack geometries in
functionally-graded plates under mode-I tension, bending and thermal loads. Some final remarks and
observations conclude the study.

2. Finite element analysis including graded material properties

With the finite element method, material properties can vary between elements or between integration
points. The term homogeneous element here describes an element with all integration points assigned a
common property value; the term graded element here describes an element with integration points that
may have different property values. Many researchers, including Williamson and Rabin (1992), Lee and
Erdogan (1995), Anlas et al. (2000), Li et al. (2000), Santare and Lambros (2000), Bruck and Gershon
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(2002), and Kim and Paulino (2002¢) apply homogeneous and graded elements to model uncracked FGMs.
With increasing mesh refinement, solutions generated with homogeneous and graded elements converge at
a rate dependent upon the severity of material gradients and the quadrature schemes (Kim and Paulino,
2002c¢). In addition to the zero-energy modes and shear-locking mechanisms associated with homogeneous
elements (Bicanic and Hinton, 1979; Kim et al., 1990; Cook et al., 2002), property variation between
integration points may introduce additional sources of poor element behavior. For example, with full (four-
point) integration, spurious shear strains develop in a four-noded (bilinear) quadrilateral element under a
pure tension loading which acts perpendicular to a gradation in elastic modulus. This study employs tri-
quadratic (20-noded brick) elements with graded material properties and reduced (2 X2 x2) integration—a
combination shown here to yield good behavior.

Within graded elements, the calculation of stiffness, stress and other quantities requires the value of
properties at integration points. One technique to assign a spatially-varying property at integration points
employs temperature-dependent material properties. For example, we may define Young’s modulus, E(x),
x = (x1,x2,x3), as a function of temperature, and then define temperature as a function of spatial position
such that the expression 0E(x) /07T (x) x 0T (x)/0x; yields the desired value for 0E(x)/0x;. The assignment of
a zero thermal expansion coefficient then eliminates unwanted thermal strains. Rousseau and Tippur (2001)
adopt this approach which is useful to verify other implementations including those described below. This
method permits only one form of spatial variation, 07 (x)/0x;, and is not suitable for thermomechanical
analyses where temperatures and material properties vary distinctly. The current study employs a more
general procedure.

To support multiple material gradients and simultaneous thermal and mechanical loads, element-level
routines can retrieve analyst-defined values of material properties at integration points or model nodes. An
explicit function that defines the spatial material variation (Konda and Erdogan, 1994), or a routine that
calculates properties according to a micromechanical model (Nemat-Nasser and Hori, 1993) are two
commonly-used methods to produce the required property values. With analyst-specified nodal values for
the properties, interpolation using element shape functions determines property values at integration
points. For its generality and accuracy (Li et al., 2000; Kim and Paulino, 2002c), the current study employs
the nodal-values approach.

2.1. Performance of graded 3-D elements

This section examines the accuracy of finite-element procedures for the analysis of uncracked bodies with
graded elastic moduli and graded coefficients of thermal expansion (CTE). Simple boundary-value prob-
lems for 2-D (plane-strain) graded solids that have analytical solutions available in the literature provide
benchmarks to assess the performance of the finite element analyses. To simulate plane-strain conditions,
the finite-element models described in this section have one layer of 20-noded bricks in the thickness
direction, and have out-of-plane displacements constrained to zero. Erdogan and Wu (1997) derive semi-
analytical solutions for stresses in an uncracked, semi-infinite graded strip (Fig. 1) subjected to fixed-grip
displacement, tension and bending loads. The strip has an exponential variation of Young’s modulus in the
form E(x) = E;ef*. The constant of material nonhomogeneity, f3, follows the relation

)

where W denotes the specimen width and E,/E| is the ratio of Young’s modulus at x = W and 0. Notice that
1/p represents the length scale of material nonhomogeneity. Poisson’s ratio, v, remains constant throughout
the specimen. In the semi-infinite strip, the plane-strain stress a,, due to a remotely applied axial force, N, is
(Erdogan and Wu, 1997)
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Fig. 1. (a) Schematic of a semi-infinite strip of width I, with material properties graded exponentially in the x-direction. Poisson’s
ratio, v, is constant, and E;, a;, and k;, i = 1,2, are the Young’s moduli, coefficient of thermal expansion, and coefficient of heat
conduction at x = 0 and W, respectively. The two load cases are: (1) an imposed, uniform axial stress, and (2) an imposed temperature
field, with 7(x =0) =T, = 0.057 and T(x = W) = T» = 0.5T,. (b) 40x10x1 mesh of the uncracked strip (a = 0) consisting of 20-
noded brick elements. (¢) Mesh for the cracked strip: a/W = 0.4. (d) Crack-front elements with quarter-point midside nodes and
collapsed faces. Dimension Rp provides a measure of domain size, and L. indicates the size of crack-front elements.

0y (x) = Eoe?(4x + B), (2)
where values of 4 and B follow by enforcing the boundary conditions for axial force N and moment M:

/Owaw(x)dx:N and /Owaw(x)xdx:Mzg. 3)

Fig. 2(a) shows a,,(x) on each y = constant section of the strip given by Eq. (2). This curve corresponds
to the ratio E,/E; = 10, with normalization by the applied stress, ;. The symbols indicate finite-element
stresses at integration points along a constant y-value. They agree very well with the semi-analytical
solution. Fig. 2(b) shows the computed deformation of the finite-element model under tension loading.

Erdogan and Wu (1996) also determine the stress distribution in a functionally-graded, semi-infinite strip
subjected to thermal loading. They adopt an exponentially-varying Young’s modulus and constant Pois-
son’s ratio. For the thermal properties, they also adopt exponentially-varying coefficients of thermal
expansion, o(x) = oje™, and heat conduction, k(x) = kje™, where o; and k; denote the values of the
coefficients at x = 0. Here, w and # set the material nonhomogeneity according to

1 o 1 k>
=—1In|{— =—1In(—). 4
) n(O“) and # n<k1> 4)

Accordingly, 1/w and 1/n represent the length scales of material nonhomogeneity associated with thermal
expansion and conductivity, respectively. The temperature distribution follows by solution of the one-
dimensional (1-D), steady-state diffusion equation with spatially-dependent conductivity, i.e.

% (k(x) 2—?) —0, (5)
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Fig. 2. (a) Analytical and finite-element solutions for g,,(x) in an uncracked semi-infinite strip (shown in Fig. 1) under axial tension
loading, steady-state thermal loading, and combined (thermal plus tension) loading, with E,/E; =10, on/oy =2, ky/k = 10,
T(x=0)=T,=0.05Ty and T(x = W) =T, = 0.5T;. (b) Deformed shape of the graded finite-element strip under tension loading,

(c) thermal loading, and (d) combined loading.

which yields

T(x)=Ce™ +D, (6)
where C and D denote constants of integration found by assigning values for &, /ky, T(x = 0) and T(x = W).
With the known temperature distribution, Erdogan and Wu (1996) show that the plane-strain stress g,,(x)

has the form
E(x)
oy (x) = m

Values for 4 and B follow upon application of the boundary conditions requiring, respectively, zero net
axial force and zero net moment:

/OW o,(x)dx =0 and /OW 0, (x)xdx = 0. (8)

[Ax + B — (1 +v)a(x)(T(x) — Tp)]. (7)
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Fig. 2(a) shows the semi-analytical and finite-element stresses for this simple thermal loading in a model
with the following material properties: E,/E; = 10, op/0y =2, ko /ky = 10, T(x =0) = T} = 0.057;, and
T(x=W) =T, =0.5T; (see Fig. 1). The quantity oy = E;o;7y/(1 — v) defines the conventional normalizing
stress for thermal loading in plane strain. Fig. 2(c) shows the computed deformation of the finite-element
model for the above boundary conditions and material properties.

The semi-analytical solution for the combined tension and thermal loadings superposes the normalized
results from Eqgs. (2) and (7). The corresponding finite element solution represents one analysis including
combined thermal and tension loading (see Fig. 2(a)). Fig. 2(d) shows the deformed shape of the finite-
element model under the combined loading. This 2-D example provides a partial verification of the 3-D
numerical procedures used in this study to model FGMs.

3. The domain integral for cracks in FGMs

Three-dimensional domain integral methods rely upon volume integrals to compute J-values pointwise
along crack fronts. Early works on the domain integral method (Li et al., 1985; Shih et al., 1986; Moran and
Shih, 1987a; Nikishkov and Atluri, 1987a; Nikishkov and Atluri, 1987b; Shivakumar and Raju, 1992)
formulate the procedure for 2-D (area) and 3-D (volume) domains, and apply the technique to cracks in
homogeneous solids under linear-elastic and elastic—plastic deformations arising from mechanical and
thermal loads. Gu et al. (1999), Chen et al. (2000), and Kim and Paulino (2002a, 2003) extend the domain-
integral method to 2-D FGM specimens under isothermal, linear-elastic loading. The interaction-integral
method, based upon the J-integral, is useful to obtain mixed-mode stress-intensity factors in linear-elastic
3-D solids (Nakamura and Parks, 1989). Dolbow and Gosz (2002) apply the interaction integral method to
FGM specimens under mechanical loading. These studies of simple 2-D models with through cracks in
FGMs determine stress-intensity factors that compare well with analytical values, but none of them
investigate 3-D configurations. The following sections describe the formulation of the 3-D domain integral
for FGMs.

3.1. The 3-D domain integral

The following derivation of the 3-D domain integral parallels those found in Shih et al. (1986) and
Moran and Shih (1987b) for homogeneous materials. The pointwise energy release rate along a generally-
curved, planar crack-front in 3-D has the form

J(S) = }_III(I) (Wé]i — J,zjuj,l)n,-dC, (9)
- r
where W is strain energy density, o;; denotes stress, u; represents displacement, and (-),; = 0(-)/0X;, where X;
refers to local coordinates defined at each point, s, along a crack front. Fig. 3 illustrates the local coordinate
system at location s, where X, is normal to the crack plane, X5 defines the in-plane tangent to the crack, and
X, defines the in-plane normal. The curve I encloses the crack-front in the X;—X; plane. As written, Eq. (9)
remains valid for nonlinear-elastic material behavior, and equals the standard J-integral (Rice, 1968)
including effects of body forces, crack-face tractions, thermal strains and general material property gra-
dation only when r — 0%,
In global coordinates, x;, let v;(s) be defined as the unit normal to the crack-front at position s, lying in
the X;—X; plane. Eq. (9) then represents the first component of the vector integral

J(s) = Ji(s)ve(s) = lim [ (oyu;6 — Woy)m;v dC, (10)

r-o fr
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Fig. 3. Schematic of I'(s) in Eq. (9). The domain for the analogous 2-D integral is the area 4, bounded by the contour
C=C+C —TI(s)+C.

Crack front — Crack front —

Fig. 4. (after Shih et al., 1986) Virtual crack advance in the local X,—X; plane at crack-front location s. Crack advance occurs in the
Xj-direction, and is defined as 6/(s) = Aal(s)vi(s).

where m; = —n; on I'(s) as shown in Fig. 3. A virtual displacement applied to a segment of the crack-front
takes the form
01(s) = Aaly(s)ve(s), (11)

as illustrated in Fig. 4. Here, Aa is the amplitude of the arbitrary displacement, /,. A first-order approxi-
mation of the energy released due to the crack advance, —dx, is (Rice et al., 1973)

—577::/ J(s)ol(s)ds, (12)

where L¢ refers to a finite segment of the crack-front, as illustrated in Figs. 4 and 5. Egs. (11) and (12)
together give

—on=JAa = Aa/ J ()i (s)ve(s)ds, (13)

Lc

where J represents the energy released when crack segment L advances by 6/(s). By combining Egs. (10)
and (13), one obtains

JAa = Aa/ Ii(s) |:}“lr% /(a,-juj,k — Woy)m;dC|ds (14)
Lc - r
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Fig. 5. Surface and volume domains used to calculate J(s) at crack-front location s = b extend from point @ to point ¢, a length equal to
Lc. Surfaces S, and S; (cylindrical surfaces), S, and S; (flat lateral surfaces), and S*, and S~ (top and bottom crack-face surfaces)
comprise surface S and enclose volume /' of the domain integral. For general loading conditions, S; must shrink to the crack tip, i.e.
r — 0%. Vector m is the outward normal to S;, S;, S*, and S~.

JAa = Aa lrln}) (Gt — Wou)lym; dS, (15)
~0 Js,
where S;, shown in Fig. 5, is the surface created by “extruding” I'(s) in Fig. 3 over a distance Lc along the
crack front. The radius of this surface shrinks to the crack-front in the limiting process. The divergence
of the integrand in Eq. (15) is zero for the same conditions that guarantee path independence of the 2-D
J-integral, i.e. quasi-static, isothermal loading, elastic constitutive behavior, and no body forces or inertia.
In the presence of general loading conditions, the integrand is not divergence free, and takes the form

(Gijuj,k - Wéik)yi = (O'ij,iuj,k + oyl — W,k)- (16)

In this expression, the definition of strain energy density, W, includes the effects of thermal strains, non-
linear (elastic) deformation and material gradients, as discussed in a following section. The present goal is
to obtain a volume integral equivalent to Eq. (15). To accomplish this, we multiply both sides of Eq. (16) by
an arbitrary, sufficiently smooth vector field g;, and integrate over any simply connected region ¥ within
the loaded body to obtain

/(O'ijuj.k - Wéki)u’ i drv = /(O’ijuj:ki — Wy )f]dea (17)
v v

where the present assumption of zero body forces and inertia causes ¢;; u;; to vanish. An alternative
expression for the left side of Eq. (17) is

/(O’,-juj_’k — Wéki)ai qk dV = / I:(Uijujyk — W(ski)qk] si dV — /(O'ijuj"k — W(Skz)%de (18)
vV v v

A surface integral results from applying the divergence theorem to the first integral on the right side of
Eq. (18). An expression for this surface integral follows from Eqgs. (17) and (18):

/(Uijuj,k — Wo)qim; dS = /(Gij“j,k — Wéii)qridV + /(O'ijuj‘ki — W )qedV. (19)
S 14 4
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X, X,
X, A
g-function X
1

Fig. 6. The arbitrary function ¢, is interpreted as a virtual crack-front displacement, and varies from unity on surface S, at location
s = b, to zero on surfaces S;, S, and S; (see Fig. 5).

Because surface S of the above surface integral encloses an arbitrary volume V, a suitable definition is
S=8T+85 +8 — S +S5+S; (see Fig. 5). The arbitrary function g, varies smoothly within 7 as follows
(Shih et al., 1986):

I on S,
g=10 on Sy, 8,53, (20)
arbitrary elsewhere.

Fig. 6 illustrates schematically a permissible definition of g,. According to this definition of S and ¢, the
right-hand side of Eq. (19) equals the integral in Eq. (15), and one may write

J = / (O','jl/lj_’k — W&k,)qk,dV—F/ (O',‘ju]"ki — W,k )qde, (21)
vV 14

when body forces, inertia and crack-face tractions are absent. As mentioned previously, the second inte-
grand in this expression vanishes for a homogeneous body under isothermal, quasi-static loading and
elastic material behavior.

By assuming that the energy release rate varies little over the length, Lc, of the domain under conside-
ration, J(s) may be moved outside the integrand in Eq. (13). Egs. (13) and (21) then combine to yield an
expression for the pointwise value of J(s):

B J
S le(s)ui(s)ds”
The transformation of stresses and displacements to the crack-front coordinate system (X; in Figs. 3-6)

simplifies the form of Eq. (21). In this case, v;(s) = X;(s), and all subscripts “4” in Egs. (21) and (22)
become “1.” The discussion below adopts this approach to evaluate J(s).

J(s) (22)

3.2. Derivative of strain energy density: W,

The strain energy density, W, can be defined as a function of the total strain &j;, temperature ®, and
spatial position x = (x1,x2,x3):
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7

W(e;, ©,x) = /o’k] o, de];, (23)

where for uncoupled, quasi-static thermomechanical analysis, mechanical strains, &, equal total strains, ¢ i
minus thermal strains, 83‘1:

e =c — el =g —a(x)O(x)d;. (24)
Here, a(x) is the pointwise-isotropic coefficient of thermal expansion, ®(x) is the relative change in tem-

perature, and J;; represents the Kronecker delta. The derivative of strain energy density, W,;, needed to
evaluate Eq. (21), becomes

ow

1Z 1 —
m
ey

&y T (W )explicit’ (25)
which, combined with Eq. (24), yields
W= O-l'.i(gz/' - 8§j'l>71 +(W’1 )explicit (26)

= a,-j(eﬁjﬁl — a,1 (2)O(x)d;; — o(x)O,; (x)d;) + (W 1)

where (W, )explicit denotes the derivative of strain energy density with respect to spatially-dependent
parameters. Substitution of Eq. (27) into Eq. (21) causes o;u;; to cancel with gy, and the result is

(27)

explicit?

J= /(Uz’j”j.,l - W‘Sli)fh,idVﬁL/ [Uij(om (x)O(x)d;; + a(x)O,1 (x)55) — (W1 )expricit |41 4V (28)
4 4

The second integral of (28) represents a correction term to account for the nonvanishing divergence of
the J-integral in the presence of thermal strains and material property gradients. Terms related to thermal
effects are easily calculated from known distributions of CTEs and temperature (Shih et al., 1986). Typically
for FGMs, (W ,; )explicit derives from a specific definition of strain energy density (Chen et al., 2000; Kim and
Paulino, 2002a, 2003). A description of two forms for this term follows in the next section.

3.3. Assessment of alternative forms of (W, ) explicit

For small displacement gradients in a nonhomogeneous, linear-elastic isotropic material, Eq. (23) be-
comes

W (e, ©,x) = / » Ciina (x)ef e, (29)
0
where Cjy,(x) is the spatially-varying isotropic elastic constitutive tensor
C,-jkl(x) = i(x)é,«jék; + ,u(x)(é,-kéﬂ + (3,*1(31'1(), (30)

in which ¢;; is the Kronecker delta, and the spatially-varying Lamé constants A(x) amd p(x) are

B B
=T -aw) ™ =50y GD)
(W’l )explicit is
ow ow

(W )explicit = aE—(x)Evl (x) +6v_(x)v71 (x). (32)
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For homogeneous materials governed by Eq. (29), (W1 ). = 0, and under isothermal conditions, the
second integral of Eq. (28) vanishes completely. In graded materials where (W1 ) e 7 0, Eq. (29) leads to
analytical expressions for OW /0E(x) and OW /0v(x). For material variations expressed by smooth analytical
functions, e.g. E(x) = E;ef, the evaluation of E, (x) and v, (x) becomes straightforward, e.g.
E, (x) = PE(x).

Another example of nonzero (W, )i arises when a function such as the Ramberg-Osgood equation
describes the multi-axial nonlinear stress-strain relationship: &; = ¢,0;; + ¢, + 3/2 x a(x)[o./ a0 (x)]"™ 7! x
S;;/E(x), where ¢, is the mean strain, J;; the Kronecker delta, & the elastic deviator strain, o. the
equivalent (Mises) stress, oo(x) the yield stress, S;; the deviator stress, E(x) the Young’s modulus, and
o(x) and n(x) are the spatially-varying scalar parameters. In this case, one expression for strain energy
density is

1 +v(x) 31— 2v(x) 2n(x) a(x) [ o "V
w _tu @ —_ - \7 2 = 2 e 33
(&3 ) 3E(x) %ts E(x) P n(x) +1 E(x) \ oo(x) ’ (33)
where p is the hydrostatic pressure, i.e. p = —(0 + 7,, + 0..)/3. The explicit derivative (W1 ). e NOW
becomes difficult to evaluate, i.e.,
ow ow ow ow ow
i ==——F — — — — . 4
(W1 ) expiicit o (x) + o ! (x) + ox ! (x) + on ! (x) + 300 0,1 (%) (34)

These two examples illustrate that although Eq. (23) is quite general, the analytical form of (W1 )eyicic 1S
material-specific and likely becomes tedious to evaluate when the ““1”’ direction changes continuously along
a 3-D curved crack relative to the property gradient directions.

3.4. A general expression for (W, )expiicit

Rearrangement of Eq. (27) provides an expression for (W, )explicit that leads to more convenient
numerical evaluation:

W1 )explicic = W1 —0(&5;1 — o1 (x)O(x)5y; — a(x) O, (x)3). (35)
Substitution of this expression into Eq. (28) gives
j = / (Uijuj,l — Wé],)qlldV—F /(O—ijgfj,l — W])qldV, (36)
Vv Vv
which is equivalent to Eq. (21) since oy;u;1; = oy, ,. This expression yields J(s) when combined with Eq.

(22). This is an expected result because the terms in Eq. (35) are the same as those used to transform Eq.
(21) into Eq. (28). Eq. (36) now replaces Eq. (21) for numerical computation, and specifically accounts for
the effects of material gradients and thermal strains. The appearance in Eq. (36) of ¢;;¢;;, rather than o;u;;
follows from the derivation rather than from a deliberate substitution. Both terms include second deriv-
atives of displacement, and provide similar accuracy. Eq. (36) is the three-dimensional equivalent of
Eq. (6.7) in Moran and Shih (1987b), which defines J for an elastic—plastic material.

Eq. (36) accounts for material gradients and thermal stresses, but omits other standard terms to account
for body forces, inertia and crack-face tractions (c.f. Anderson, 1995). The use of Eq. (36) to calculate J
remains valid for nonlinear elasticity (deformation plasticity), and leads to computational generality since
all quantities are available from standard finite-element calculations. For analyses using flow-theory con-
stitutive models with parameters that vary spatially, the proposed form of J does not retain strict validity —
this is the same issue of computing the ordinary J for incremental-flow theory of plasticity vs. deformation
plasticity. Another consideration regarding Eq. (36) is the replacement of analytically-defined derivatives
in the second integrand of Eq. (28) by derivatives (including ¢;;) obtained via potentially less accurate,
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mesh-dependent interpolation schemes. For homogeneous materials, Eq. (28) yields greater accuracy than
Eq. (36) because (W,1 )i and o1 vanish and the temperature derivative, ©,, is generally quite smooth.
The remainder of this study examines the implementation, accuracy and application of Eq. (36) for graded
materials under thermomechanical loading.

4. Numerical implementation

Numerical evaluation of the integrals in Eq. (36) uses the same quadrature schemes employed for ele-
ment stiffness computation. The discretized form of Eq. (36) is

- X,
J = E E { [(O’,-juj‘l - Wéli)q]ﬁi + (O-ijgij,l — W,] )qu| det <_ank>} Wp. (37)
1 p

elems p

For the equivalent expression derived from Eq. (28), [-] in Eq. (36) is
[(Gz:/”./.l = Wéi)qii + (a1 (x)O(x)d;; + (x)O,1 (x)d;; — (W1 )explicit)q1:|'

In both expressions, the outer sum includes all elements in the domain, and the inner sum ranges over each
element integration point p with corresponding weight w,. The determinant of the coordinate Jacobian,
det(-), relates local crack-front coordinates Xj to parent-element coordinates n,. Computation of spatial
derivatives for strain and strain energy density at integration points proceeds as follows:

e Use a standard procedure (e.g. Cook et al., 2002) to extrapolate strains and strain energy density from
element integration points to element nodes.

e Average these extrapolated nodal values with contributions from adjoining elements.

e Calculate derivatives at integration points using isoparametric interpolation, i.e.

)y <~ o ON; O, M, I~ o ON; O,

- 4 _F — - - _r
B on oy W A o,

o (38)

=1 k=1 =1 k=1

where (eﬁj) , and ¥, denote integration point quantities, n is the number of element nodes, N, is the element
shape function corresponding to node /, 1, are parent coordinates, and (¢j;), and ¥ are the nodal values
of total strain and strain energy density.

The WARP3D fracture code used for this implementation is a free, open-source, general-purpose finite-
element software developed at the University of Illinois at Urbana-Champaign (Gullerud et al., 2000).
J-integral results reported here employ Eqs. (37) and (38) with 20-noded isoparametric “brick” elements
with reduced (2x2x2) integration.

5. Verification of the general J-formulation for 2-D configurations

Erdogan and Wu (1997) describe analytical solutions for a crack located in a semi-infinite strip and
subjected to tensile, fixed-grip and bending loads. Fig. 1(c) shows the cracked strip where a/W = 0.4, and a
group of ten focused (collapsed) elements, shown in Fig. 1(d), surround the crack-front region. This mesh
employs quarter-point elements, and coincident crack-front nodes share the same x-displacement, i.e. they
have identical node numbers. The ratio of the length, L., of crack-front elements on the crack plane to the
strip width, W, is L./W = 0.007 (see Fig. 1(d)). Thirteen semi-circular domains produce J-values in a mesh
consisting of 496 20-noded bricks and 3735 nodes. An exponential variation, E(x) = Eje’, describes the
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gradient of Young’s modulus, where E,/E; = 10, and f§ follows from Eq. (1). Poisson’s ratio remains
constant at v = 0.3, and constrained out-of-plane displacements enforce plane-strain conditions. Eq. (36)
leads to J(s) for an imposed tensile stress g,. The conversion of J-values to K;-values here follows the
standard expression

Ki(s) = (J(s)E*(s))'"%, (39)

where E*(s) = E(s)/(1 — v?) for plane-strain conditions, E*(s) = E(s) for plane-stress conditions, and E(s)
denotes the value of Young’s modulus at crack-front location s. The use of E(s) follows from the identical
form of the asymptotic crack-front fields in homogeneous and functionally graded materials (Eischen, 1987,
Jin and Noda, 1994). For discussion, normalized K;-values equal

— K[
" on/ma’

where o, is the applied tensile stress, and a is crack depth (see Fig. 1). Table 1 lists Kj,-values for two
different analyses and compares them with those of Erdogan and Wu (1997). The first analysis employs
Eq. (36). To avoid the interpolations used to evaluate Eq. (36), the second analysis uses the analytical
expression for (W )cxplicit given in Eq. (32), together with Egs. (21) and (25). In all cases, an average of the
J-values from domains three through thirteen is inserted into Egs. (39) and (40) to define a single K;,-value
shown in Table 1.

The influence of the two integrals in Eq. (36) becomes apparent in Fig. 7(a), which compares the value of
each integral vs. the radius, Rp, shown schematically in Fig. 1(d), of the specific computational domain.
With increased domain size, the influence of the second integral increases steadily, and without this term,
the J-integral becomes proportionately inaccurate.

Through a two-step perturbation procedure, Erdogan and Wu (1996) obtain K;-values for a semi-infi-
nite, exponentially-graded, cracked strip subjected to thermal loading (see Fig. 1(a), and Wilson and Yu,
1979). Egs. (1) and (4) describe the exponential material variation specified for the strip. In the first step of
the solution procedure, Erdogan and Wu determine the axial stress distribution, ¢,,, in an uncracked,
thermally-loaded strip. This stress, shown as the lower curve in Fig. 2(a), represents a crack-closure stress,
which, in the second step, produces crack-face tractions acting to drive crack opening in the cracked strip.
Integral equations then yield stress-intensity factors generated by these crack-face tractions. Values taken
from the graphical results of Erdogan and Wu (1996) enable comparisons with the present finite-element
analyses.

In the finite-element analysis procedure used here, thermal loads act directly upon the cracked strip. The
mesh used for this analysis, shown in Fig. 7(b), has a height-to-width ratio of four, a crack-length-to-width
ratio, a/W, of 0.5, and constrained out-of-plane displacements to enforce plane-strain conditions. As in the
previous example, a group of ten focused (collapsed) elements surround the crack-front region, the ratio of
crack-front element length, L., to strip width, W, is 0.007, and all crack-front nodes have zero y-dis-
placement. This mesh employs quarter-point elements, and coincident crack-front nodes share the same x-
displacement, i.e. they have identical node numbers. The mesh consists of 50 820-noded brick elements and
3829 nodes. The following examples employ two material variations and two thermal loading conditions

Kln (40)

Table 1

Normalized K;-values for a plane-strain, semi-infinite strip under axial tension (see Fig. 1): E,/E, =10, v=10.3, a/W = 0.4
Analysis Method K % Diff.
Reference Erdogan and Wu (1997) 1.588 -
Ist Eq. (36) 1.579 -0.57

2nd (W1 ) expicr B4 (32) 1.588 +0.00
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Fig. 7. (a) Normalized components of Eq. (36) for tension loading of SE(T) specimen in Fig. 1(c) for a/W = 0.4 and E,/E, = 10.
(b) Mesh used for thermally-loaded SE(T) specimen: a/W = 0.5. (c) Normalized components of Eq. (36) for uniform thermal loading
for I} = T, = 0.05Ty, E>/E; =5, and oy /oy =2 (69 = Eyou Tp/(1 — v)). (d) Scaled view of data in (c).

selected from Erdogan and Wu (1996) which Table 2 describes. They include the application of two uniform
temperature loads to an exponentially-graded strip where E,/E; =5, op/0y =2, and v = 0.3, and two
exponentially-varying temperature loads to an exponentially-graded strip where E,/E; = 10, k»/k; = 10,
o /oy =2, and v = 0.3. A common normalization for K;-values obtained from thermal loading is

K;
Kp=— "t (41)
" Bl Ty/ma’
Table 2
Normalized K;-values for a crack in a plane-strain, semi-infinite strip under thermal loads (see Figs. 1(a) and 7(b)): v= 0.3, a/W = 0.5
Material variation Thermal load (see Fig. 1) K
Erdogan and Wu Eq. (36) % Diff.
(1996)
E)JE, =5 T =T=0.5Ty 0.0125 0.0127 +1.6
062/061 =2
ka/ky is arbitrary Ty =T, =0.05T; 0.0245 0.0241 -1.6
Ey/E, =10 T, = 0.2T, 0.0335 0.0335 +0.0
0(2/961:2 TQIOSTO
ky/ki = 10 T, = 0.05T, 0.0410 0.0409 -0.2

T, = 0.57;
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where a is crack depth, Tj is initial temperature, and o; is the value of the CTE at the cracked surface. For
plane-strain conditions, E} = E; /(1 — v), and for plane stress conditions, E} = E;, where E| is the value of
Young’s modulus at the cracked surface. Table 2 lists stress-intensity factors obtained from each of the four
cases and their deviation from the solution obtained from Erdogan and Wu (1996). In each of the four
analyses, an average of the J-values from fourteen domains, inserted into Egs. (39) and (41), leads to a
single value of Kj,.

Fig. 7(c) shows the contribution to J of both integrals in Eq. (36). Both integrals show strong path
dependence with an increase in domain size to crack length ratio, Rp/a (see Fig. 1(d)). Because inhomo-
geneity in both elastic properties and thermal expansion coefficients contribute to J, the path dependence is
more severe than for the mechanical loading studied above. Fig. 7(d) shows values of Eq. (36) with an
enhanced scale. The J-values for both mechanical and thermal loading show good domain independence.

6. Calculation of mode-I K;-values for surface cracks

Procedures for obtaining K;-values for 3-D cracks include the line-spring method (Rice and Levy, 1972),
the modified crack-closure integral (MCCI) (Rybicki and Kanninen, 1977; Ramamurthy et al., 1986; Raju,
1987; Narayana et al., 1994), the displacement correlation technique (DCT) (Shih et al., 1976), stress
correlation (Raju and Newman, 1979), the domain integral technique (Shih et al., 1986), the interaction
integral method (Nakamura and Parks, 1989), and the F-integral (Eriksson, 2002).

Raju and Newman (1979) and Newman and Raju (1979) apply the force method to surface cracks in
homogeneous plates under tension and bending loads. Although more recent works report stress-intensity
factors for surface cracks (e.g. Rajaram et al., 2000; Ayhan and Nied, 2002), the extensive solutions of
Newman and Raju remain a frequently-cited benchmark. For homogeneous materials, the current study
uses their results to verify mesh-refinement levels.

The methods listed above also apply to the analysis of FGMs (e.g. Kim and Paulino, 2002a). The MCCI,
DCT and stress correlation methods are particularly useful for linear-elastic analyses of FGMs because the
presence of material gradients does not influence their formulation. Erdogan and Wu (1997) suggest that
the line-spring method, combined with their semi-analytical solutions for the graded 2-D strip discussed in
Section 5, provides an approach for the calculation of stress-intensity factors in FGMs with surface cracks.
The current study employs the DCT to verify K;-values obtained through Eq. (36).

6.1. Crack geometries, material variations and loadings

Fig. 8(a) illustrates a plate with a semi-elliptical surface crack under tension, bending and thermal loads.
Material properties vary only in the thickness (x) direction. The geometry, loading and material property
variations lead to mode-I conditions on the crack plane. Symmetry permits modelling of only one quarter
of the specimen. Variables of interest in this study include: crack depth, a; crack half-length, ¢; and plate
thickness ¢. Dimensions 4 and b remain fixed at five times the larger of a and ¢ such that the K;-values
approximate those in a semi-infinite plate. The current work includes analyses of plates for a range of
practical crack geometries of a/c = 1/3, a/c =1 and a/c = 2 and crack depths of a/t = 0.2, a/t = 0.5 and
a/t =0.8. A specimen cross-section, illustrated in Fig. 8(b), indicates through-thickness material variation,
assigned to follow the form E(x) = Ejef*, where E; = E(x = 0), E, = E(x = t), with f§ given by Eq. (1) such
that E,/E; = 0.2, 1.0 and 5.0. Poisson’s ratio remains constant at 0.25 in all cases. Fig. 8(b) also illustrates
the applied tensile stress, g, and bending stress, ay,, where oy, = 3M /b¢*. Table 3 summarizes the surface-
crack geometries, material properties, and temperature variations employed in this study.

Thermal loading conditions follow those used by Erdogan and Wu (1996) who analyzed a zirconia/Rene-
41 composite with the properties listed in Table 4. Young’s modulus (E), CTE («), and conductivity (k)
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Fig. 8. (a) Surface crack specimen showing axial, bending and thermal loads. The hatched area illustrates the potential region for the
“boundary layer” (see Section 6.3). Symmetry permits analysis using one quarter of the model. (b) Cross-section of plate showing

unidirectional material variation from cracked face to uncracked face. Bending stress is calculated from total moment M as
Op = 3M/bt2

Table 3
Specified surface-crack geometries, material properties, and temperature loads
Quantity Specified values
ajc 1/3, 1,2
alt 0.2, 0.5, 0.8
Ey)/E; 0.2, 1.0, 5.0
va/vi 1.0
h/T 5, 10, 20
Table 4
Properties for thermal loading of surface-crack specimens (Erdogan and Wu, 1996)
Material E (GPa) v o (K1) k (Cal/mm sec K)
(x = 0) Zirconia 151 0.33 1.0x1073 0.05
(x =1) Rene-41 219.7 0.33 1.67x1073 0.61

vary exponentially according to E(x) = Ee, a(x) = aje™, and k(x) = ke, where (*); is the property value
at x = 0. The coefficients of nonhomogeneity, 5, ® and u have values given by Egs. (1) and (4). These
material properties are taken as temperature independent.

Fig. 8(a) shows the qualitative temperature distribution which follows solution of the 1-D diffusion
equation described in Section 2. The selected range of boundary temperatures includes: 77 = 575, T} = 1073
and T} =207, where T} = T(x =0) and 7> = T(x =¢) = Ty. To illustrate the application of Eq. (36) to
thermal loading, the present work includes analyses of plates with the three crack geometries listed in Table
3, each with a crack depth of a/r = 0.2.
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6.2. Conversion of J to normalized stress-intensity factor, Ky, for surface cracks

This paper reports values of the domain integral, Eq. (36), calculated at the corner nodes of all crack-
front elements. Parametric angle, ¢, measured in radians, describes the location of crack-front nodes on the
crack-front for possible ranges of the ratio a/c (see Fig. 9). At each crack-front location ¢, Eq. (39) yields
K;-values from J and E(s), the value of Young’s modulus at that location. For through-thickness material
variation and semi-elliptical cracks, E(s) at ¢ equals E(x) at distance x = asin ¢ from the cracked surface.

A general form for mode-I stress-intensity factors for semi-elliptical surface cracks is

Ta_/a a

KI_S §F<;7z7¢7p)7 (42)
where S = g for tension, and S = g, for bending. For plane-strain thermal loading, S = o E;To/(1 — v),
and for plane-stress, S = a1E Ty (Erdogan and Wu, 1996). Fig. 1 defines a;, E;, and 7,. The shape fac-
tor, O, denotes the square of the complete elliptic integral of the second kind. /O equals half the arc
length of an ellipse divided by the length of the major axis (Merkle, 1973), a ratio commonly approximated
by

1.65

(43)

o [11464(2) " foraje<l,
1+1.464(¢)" for ajec > 1.

Function F in Eq. (42) includes the effects of plate dimensions, crack geometry, location along the crack-
front and material property variation, represented by P. A normalized stress-intensity factor expressed by

K a
Kln:—I:F(_aga¢7P)7 (44)
S /ma tc
o
represents a ““shape factor” for the geometry, material and loading conditions under consideration.

6.3. Stress-intensity factors at the intersection of the crack-front with the free surface

Researchers employ analytical and numerical techniques to examine the change in the singular behavior
at the intersection of a 3-D crack-front with a traction-free surface (Hartranft and Sih, 1970; Benthem,
1977; Bazant and Estenssoro, 1979; Pook, 1994). These studies demonstrate the existence of a “boundary
layer” very near the free surface over which a generalized stress-intensity factor may vary sharply. The
change in singular behavior depends upon Poisson’s ratio and the angle of intersection between the crack-
front and the free surface, illustrated by y in Fig. 9(b). For FGMs, the length scale of material gradation

e 2¢ - o 2c ——
@) (b)
Fig. 9. Plan view of the crack plane shown in Fig. 8(a). (a) Measurement in radians of parametric angle, ¢, for a/c > 1.0. (b) Para-

metric angle, ¢, for a/c < 1.0, and intersection angle, ¥/, describing the angle between the crack-front and free surface. For all models in
this study, ¥ = 90°.
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Fig. 11. Comparison of normalized stress-intensity factors, K;,, obtained using Eqs. (36) and (45) for 3-ring and 10-ring crack-front
mesh refinements where a/c =2 and a/t = 0.8.

(e.g. parameter 1/f, where Eq. (1) defines ) should also affect the stress state and the size of the boundary
layer. For a crack front that intersects the free surface at iy = 90°, when Poisson’s ratio is greater than zero,
the stress singularity (+~*) in the boundary layer becomes weaker (4 < 1/2), and the mode-I stress-intensity
factor tends toward zero at the surface (Pook, 1994).

Raju and Newman (1979) verify the decrease in stress-intensity factors near the free surface through a
detailed mesh-refinement study of a semi-circular surface crack. More importantly, their study shows that
the effects of the boundary layer are highly localized, and do not influence stress-intensity factors on the
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Fig. 12. Typical discretization along front for surface-crack configurations.

interior of the specimen. Chuntu and Yingzhi (1987), Li et al. (1998), Rajaram et al. (2000), Ayhan and
Nied (2002) and Frangi (2002) also demonstrate the localized influence of the boundary layer on stress-
intensity factors through numerical analyses of straight cracks and semi-circular, quarter-circular and
semi-elliptical surface cracks. Nakamura and Parks (1988) estimate the region of influence of the corner
singularity in semi-elliptical surface cracks as =~ 0.03 x a*/c, where a and ¢ are the crack dimensions
shown in Fig. 8. Because a detailed study of the boundary-layer influence in FGMs is not the focus of
this paper, the present work does not include sufficient mesh refinement in this region to determine
adequately the layer’s size, or to capture the true variation of stress-intensity factors within the boundary
layer. To acknowledge the effect of the weak corner singularity, however, for mechanical loading, the
plane-stress conversion applies here to J-values calculated at the free surface, i.e. ¢ =0, and the plane-
strain conversion applies here for ¢ > 0. Although stress-intensity factors near ¢ = 0 should tend toward
zero in order to conform with theory, the nonzero values reported here represent average stress-intensity
factors near the free surface (Raju and Newman, 1979). For thermal loading, plane-stress Kj,-values
obtained using Eqs. (39) and (44), exceed plane-strain values by a factor of [(1 —v)/(1 + v)]l/ *. To avoid
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Fig. 13. Normalized K;-values, K;,, for surface-cracked plates with homogeneous material having a/c =1, 2, and a/t = 0.2, 0.8.
Comparison of values generated using Eq. (36) with those of (a) Raju and Newman (1979) and (b) Newman and Raju (1979).

reporting an increase in Kj,-values in the boundary layer, we simply omit stress-intensity factors at ¢ =0
for thermal loading.

6.4. Mesh refinement

A mesh that is adequately refined for the correct solution of a boundary-value problem of a homoge-
neous body may require further refinement in order to capture the effects of material gradients. To confirm
adequate refinement of meshes used in this study, values of Kj, published in the literature and those ob-

tained here using the DCT verify values of Kj, obtained from Eq. (36) for both homogeneous and non-
homogeneous specimens.
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Fig. 14. (a) Comparison of normalized K;-values from the J-integral, Eq. (36) and DCT, Eq. (45), for tension and bending with
EyJE; =5,a/t=0.2,0.5,038, and a/c = 1/3; (b) a/c = 1; (¢) a/c = 2; (d) thermal loading with 7, /7> = 20, a/t = 0.2 and a/c = 1/3,
1, 2 (Material properties correspond to those for a zirconia/Rene-41 FGM. See Table 4).

For 2-D cracked configurations, Eischen (1987) and Jin and Noda (1994) prove that the near-tip dis-
placement field for functionally graded materials has the same form as for homogeneous materials.
Hartranft and Sih (1969) show that the singularity along a 3-D crack-front in homogeneous material
(remote from boundaries) has the same form as the crack-tip singularity in a 2-D configuration. Based on
these two results, the opening displacement of the crack-face, normal to the crack plane, has the asymptotic
form

4K] r
U = — Py
E(s) \ 2m

where u, denotes the displacement in the X>-direction of the coordinate system shown in Fig. 3, K; is the
mode-I stress-intensity factor, and r is the distance behind and normal to the crack-front. The use of £, in
Eq. (45) is justified by the equivalence of asymptotic crack-front fields in homogenous and functionally
graded materials (Eischen, 1987; Jin and Noda, 1994).

The DCT utilizes the relationship between displacement and K; expressed in Eq. (45) to estimate stress-
intensity factors based on u, nodal displacements behind the crack front. Here, element boundaries on the
crack-face define approximate normals to the crack front. Values of u, and r at several nodes along one
boundary, when inserted into Eq. (45), permit the calculation of a K;-value that corresponds to each node.
A plot of these K;-values vs. r yields an approximately linear relationship between K; and ». The intersection

(45)
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Fig. 15. (a) Comparison of normalized K;-values from J, Eq. (36) and DCT, Eq. (45), for tension and bending with E,/E, = 0.2,
a/t=0.2,0.5,0.8, and a/c = 1/3; (b) a/c = 1; (¢c) a/c = 2; (d) Specimen.

of this line with » = 0 provides the estimated crack-front K;-value for the DCT. Eq. (44) describes the
normalization of these values.

6.4.1. Effects of mesh refinement on K;-values for FGM specimens

Stress-intensity factor solutions from four different meshes of a plate with crack geometry a/t = 0.8 and
a/c =2, and an exponential material variation where E,/E; = 5, provide insight into the effects of mesh
refinement on the values of Kj,. Ten 20-noded, quarter-point, hexagonal elements with collapsed faces
immediately surround each crack front in the 6 direction (see Fig. 10). In the radial direction, the four
meshes have respectively 3, 5, 7, and 10 rings of elements surrounding the crack-front, corresponding to the
number of domains used to produce J-values. Sixteen elements lie along the crack-front between ¢ = 0 and
n/2. Fig. 10 shows a typical crack-front location in the local x;—x;, coordinate system for the 7-ring mesh.
Ratios of crack-front element length, L., to plate thickness, ¢, L./t, range from 1.47x 1072 for the 3-ring
mesh, to 5.41x 1073 for the 10-ring mesh. The 3-ring mesh has 7632 elements and 34 013 nodes, and the 10-
ring mesh has 8752 elements and 39 053 nodes. The number of nodes and elements in each model reflects
the large plate dimensions 4 and b. Increased mesh refinement in the four models focuses primarily on the
crack-front region. Fig. 11 shows normalized K; vs. location along the crack-front for 0 < ¢ < =/2, and
compares K;, obtained through Egs. (36) and (45) for the 3-ring and 10-ring models. The meshes yield
results which show little variation between refinement levels, and which show close agreement between the
two methods, i.e. Egs. (36) and (45).

The reduced (2x2x2) integration triggers a small amount of hourglassing in crack-front elements for
the 7-ring model, which becomes more pronounced in the 10-ring model. Hourglassing does not signifi-
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Fig. 16. Normalized J-values at three crack-front locations computed using Eq. (36) with and without the second integral. (a) Tension
loading for E,/E, =5. (b) Tension loading for E,/E; =0.2. (c) Bending load, for E,/E; =5. (d) Thermal loading
(60 = E1onTy/(1 —v)) for Ty /T, = 10 (see Fig. 8). Table 4 lists material properties.

cantly affect K; in the 7-ring model—the refinement level selected to discretize all subsequent models of
surface-cracked plates. Fig. 12 shows typical mesh refinement in the crack region for the three crack
geometries analyzed in this study, i.e. a/c = 1/3, 1 and 2. J-values obtained from all 7-ring meshes are an
average of domains three through seven.

6.4.2. Verification of K-values for homogeneous specimens

A comparison of K;-values obtained from Eq. (36) with those reported by Newman and Raju (1979)
verifies the present solution of the boundary-value problem for the homogeneous plate specimens. Fig.
13(a) compares values of K;, derived from Eq. (36) with the Raju and Newman (1979) solutions for tension
loading of homogeneous material, crack geometries a/c = 1 and 2, and crack depths a/¢ = 0.2 and 0.8. Fig.
13(b) compares Kj,-values from Eq. (36) with Newman and Raju (1979) solutions for the same models
under bending. Bending loads cause portions of the crack-face to close. Without contact surfaces, finite-
element solutions for these cases permit spurious crack-face displacements (i.e. crack-face interpenetration)
which cause some domains to produce negative J-values. Newman and Raju (1979) list the negative values;
here we report only positive values. Lee and Erdogan (1998) and Anifantis (2001) describe techniques to
include crack-face contact in 2-D cases. Fig. 13 shows agreement between K;,-values obtained from Eq. (36)
for both tension and bending loads with the Newman and Raju solutions.

6.4.3. Verification of K-values for functionally-graded specimens
For FGM cases, the good agreement between Kj,-values obtained using Eq. (36) and those obtained
using the DCT confirms that the adopted level of mesh refinement captures the effects of material property
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values of J along the crack-front corresponding to the Kj,-values in (a).

gradients. Previous applications of the DCT to 2-D models for FGMs include Li et al. (1999), Marur and
Tippur (2000), Rousseau and Tippur (2001) and Kim and Paulino (2002a). For an exponential material
variation with E,/E, = 5, Fig. 14(a)—(c) compares tension and bending results for each crack geometry
and crack depth. Fig. 14(d) compares results for thermally-loaded plates with three crack geometries:
a/c =1/3, 1, and 2, each with crack depth a/7 = 0.2. The specified surface temperature ratio is 7; /7> = 20,
with the through-thickness temperature distribution as described in Section 2 (and shown schematically in
Fig. 8).

K;,-values for all loading cases show good agreement between the two methods (i.e. from J and the
DCT), with the largest difference occurring along crack-front sections with high curvature. In Fig. 14(a), the
largest difference for a/c = 1/3 is less than 7% of the smaller value. For a/c = 2, the maximum difference in
Fig. 14(c) is less than 5% of the smaller value. Fig. 15(a)—(c) compares K,-values derived from Eq. (36) with
Kj,-values obtained via the DCT for all crack geometries and crack depths, for an exponential material
variation with E,/E; = 0.2. In this case, a maximum difference slightly greater than 7% occurs under
tension loading near ¢ = 0.25 for a/c = 1/3 and a/t = 0.8 (see Fig. 15(a)).
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Fig. 18. Normalized K;-values along a crack-front under remote tension loading for a crack with a/c =1/3 and (a) a/t =0.5;
(b) a/t =0.8.

6.5. Effect of material gradient terms on J-values

Fig. 16(a)—(d) shows J-values, calculated with and without the second integral of Eq. (36), at three
locations, ¢, along the crack front for four different combinations of crack geometry and loading. Each
curve in the figure has seven points that correspond to the seven domains used to calculate J-values. Here,
Rp/a equals the radius of the domain, measured at ¢ = n/2, divided by the crack depth, a. Fig. 10 illus-
trates Rp, which is measured ahead of the crack-front on the plane of symmetry. For the purpose of
interpreting the results shown in these figures, Eq. (28) is more intuitive than its equivalent used for
numerical implementation, Eq. (36). For tension and bending loads, the contribution of gradient terms at
small ¢ is insignificant for all domains. This reflects the vanishing of E,; (x) as the crack-front normal X,
becomes orthogonal to the direction of material variation. Fig. 16(a) and (c) shows that for E,/E, = 5,
omission of gradient terms leads to increased J-values as the domain size increases. This increase arises
from an increase in both 0/ /OE(x) and E,; (x) in the direction of the crack-front normal. For a softening
material, i.e. E,/E; = 0.2, J-values decrease as the domain size increases (see Fig. 16(b)). For the thermally-
loaded specimens, the second integrand of Eq. (36) shows a much greater influence on J than in the



1106 M. C. Walters et al. | International Journal of Solids and Structures 41 (2004) 1081-1118

K (@) K (b)
2.0 0ot
1.5 B 15+ i
1.0 e e prr EEE-TE X X2 1.0 [aa-o-%" B G
05 Tension: Tension:
i ale=1 ) 05 ale=1
a/t=0.2 a/t=0.5
0 L L L 0 L L !
0 0.25 0.5 0.75 1.0 0 0.25 0.5 0.75 1.0
2¢/n 2¢ /7
K c
20 In ( )
ba.,
1.5 = o @--G--8--8-8-87F

1.0 A N nas]
0.5 Tension: | PR Ey/E,=0.2
- Free Surface ajc=1 o E,/E =1

a/t=0.8 0 ---- E,/E,=5
0 L I |
0 0.25 05 075 1.0

2¢ /7

Fig. 19. (a) Normalized K;-values along a crack-front loaded in remote tension, with a/c =1, E;/E; =0.2, 5 and 1, and a/t = 0.2,
(b) a/t =0.5, and (c) a/t = 0.8.

tension and bending cases, as seen in Fig. 16(d). Referring to Egs. (28) and (32), when ¢ = 0, the gradient
terms E,; (x), a,; (x), and ®,; (x) all vanish. At other front locations, the gradient terms become significant
as the domain size increases, reflecting the combined effects of thermal loading and material gradients
onJ.

For all loading cases, the relative contribution of the second integrand increases with domain size, and
becomes necessary to maintain domain independence of the J-values. Because Rp/a ratios are small for the
domains employed to generate the curves shown in Fig. 16, domain dependence of J-values is not as
significant as that shown in Fig. 7(c) and (d) for an SE(T) specimen where Rp/a are larger. As domains
decrease in size, the magnitude of the second integral of Eq. (36) becomes much smaller than the first
(conventional) integral. This difference in relative magnitude is a function of the derivative (g,;) in the first
integral. Fig. 6 shows that ¢ decreases from unity at the crack-front to zero at the outer boundary of the
domain. As the domain shrinks in size, the distance from the crack-front to the outer boundary of the
domain also shrinks, and causes the derivative of g to become very large, thereby heavily weighting the first
integral (Gu et al., 1999). This trend in J with decreasing domain size agrees with observations made by
Aoki et al. (1982), Tohgo et al. (1996) and Gu et al. (1999) who suggest that very small, near-tip domains
yield accurate values of J in an FGM without including gradient terms—at least for linear-elastic analyses.
This eliminates one advantage of the J-integral, however, which is good accuracy when evaluated over large
domains in a relatively coarse mesh. Path independence, which does not generally result without the use of
gradient terms, indicates an acceptable level of mesh refinement. The omission of gradient terms removes
these two advantages of J-integral calculations.
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Fig. 20. (a) Normalized K;-values along a crack-front loaded in remote tension, with a/c =2, E;/E; = 0.2, 5 and 1, and a/t = 0.2,
(b) a/t =0.5, and (c) a/t = 0.8.

7. Stress-intensity factors for surface cracks in FGM plates
7.1. Tension load

Figs. 17-20 show K,-values for a selected range of specimen and crack geometries, all loaded by remote
tension. Because the plane-stress assumption applies to the J-Kj, conversion at the free surface, and the
plane-strain assumption applies at interior points (see Eq. (39) and Section 6.3), each of the curves exhibits
a small kink between values of K;, at ¢ = 0 and the first interior point. To simplify discussions here, the
term “‘soft” applies to specimens with a material variation of E,/E; = 0.2, and “stiff”” applies to specimens
with a variation of E,/E; = 5.0.

Fig. 17(a) shows that for a/c = 1/3 and a/t = 0.2, Kj,-values at all points along the crack-front are
greater in the homogeneous material than in the soft material, and greater in the soft material than in the
stiff material. To explain this perhaps unexpected result, Fig. 17(b) shows the corresponding energy release
rates (J-values). The energy release rate along the deeper portion of the crack is higher in the soft material
than in the homogeneous material, as expected. In this figure, the values of J for E,/E, = 5.0 clearly show
that as Young’s modulus increases along the crack-front, the energy release rate decreases with respect to
the homogeneous material. As the modulus decreases along the crack-front, the energy release rate in-
creases with respect to the homogeneous material, as demonstrated by the J-values for E,/E; = 0.2. Be-
cause of the proximity of the J-curves for the soft and homogeneous materials, the values of E(s) used to
convert J into Kj, drive the stress-intensity factors of the soft material below the stress-intensity factors of
the homogeneous material.
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Fig. 21. Comparison of trends in J, K, and E along a crack front under tensile loading for the geometry a/c =2 and a/t = 0.8, in
material where (a) E»/E; = 0.2 and (b) E;/E, = 1. In FGMs, the location, ¢, of maximum J along the curved crack-front does not
necessarily correspond to the location of maximum Kj,.

For each ratio of a/c, an increase in crack depth in the soft material causes the magnitude of Kj, near the
cracked surface to increase relative to the value of Kj, at the deepest point along the crack. For all ratios of
a/c, an increase in crack depth in the stiff material causes the magnitude of K, to increase overall, but
causes Kj, near the cracked surface to decrease relative to the value of Kj, at the deepest point along the
crack. In all materials, for a constant ratio of a/, a decrease in a/c causes the value of K, near the cracked
surface to increase relative to the value of Kj, at the deepest point in the crack.

In all geometries of nonhomogeneous material examined here, Young’s modulus, E(s), varies along the
curved crack front. Because Es) influences the conversion from J to K; (see Eq. (39)), the crack-front
location, ¢, of maximum J does not necessarily correspond to the location of maximum K;. The curves in
Fig. 21(a) show trends in the variation of J, K;, and E along the front of a surface crack under remote
tension loading with a/c = 2, a/t = 0.8 and E,/E; = 5. Here J,(¢) = J(¢)E:/(c?na/Q) defines a normal-
ized value of J along the crack-front, and E,(¢) = E(¢$)/E, defines a normalized value of Young’s modulus.
In this figure, the maximum J-value occurs near 2¢ /7 ~ 0.5, while the maximum K, occurs near the free
surface. Fig. 21(b) shows trends in J, K;, and E for an identical crack in a homogeneous material. In this
case, the crack-front locations of maximum-minimum J correspond to locations of maximum-minimum
K[.
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Table 5
Normalized stress-intensity factors, K;,, along the crack-front for specimens loaded in tension
alc 2¢/n Tension
a/t=0.2 a/t=0.5 ajt=0.8
E,/E, E,/E, E,/E
0.2 1.0 5.0 0.2 1.0 5.0 0.2 1.0 5.0
1/3 0.000 0.660 0.725 0.548 1.164 0.925 0.598 1.838 1.289 0.767
0.125 0.669 0.744 0.589 1.076 0.932 0.685 1.502 1.255 0.922
0.250 0.739 0.822 0.673 1.098 1.013 0.819 1.378 1.321 1.155
0.375 0.813 0.901 0.760 1.131 1.100 0.964 1.298 1.395 1.413
0.500 0.882 0.972 0.840 1.158 1.176 1.104 1.228 1.452 1.670
0.625 0.944 1.035 0.912 1.183 1.243 1.233 1.172 1.487 1.896
0.750 0.990 1.080 0.966 1.195 1.291 1.334 1.128 1.498 2.052
0.875 1.016 1.106 0.997 1.199 1.319 1.396 1.102 1.495 2.126
1.000 1.027 1.117 1.011 1.200 1.327 1.420 1.094 1.490 2.141
1 0.000 0.997 1.140 0.917 1.351 1.240 0.907 1.720 1.421 0.988
0.125 0.957 1.122 0.919 1.238 1.209 0.965 1.475 1.361 1.109
0.250 0.936 1.082 0.923 1.161 1.155 1.019 1.297 1.275 1.217
0.375 0.930 1.061 0.936 1.109 1.124 1.075 1.171 1.220 1.320
0.500 0.931 1.046 0.950 1.071 1.101 1.125 1.073 1.176 1.400
0.625 0.933 1.038 0.963 1.041 1.087 1.166 1.001 1.145 1.451
0.750 0.935 1.034 0.974 1.019 1.078 1.197 0.951 1.123 1.475
0.875 0.936 1.029 0.979 1.004 1.070 1.212 0.922 1.105 1.470
1.000 0.938 1.027 0.981 0.997 1.067 1.213 0.912 1.100 1.465
2 0.000 0.612 0.763 0.615 0.736 0.782 0.596 0.849 0.823 0.602
0.125 0.623 0.755 0.636 0.746 0.774 0.656 0.836 0.806 0.698
0.250 0.608 0.716 0.625 0.719 0.731 0.677 0.775 0.755 0.748
0.375 0.595 0.677 0.610 0.690 0.689 0.685 0.712 0.707 0.774
0.500 0.574 0.637 0.588 0.651 0.646 0.679 0.643 0.659 0.772
0.625 0.547 0.595 0.561 0.606 0.603 0.659 0.577 0.612 0.746
0.750 0.516 0.554 0.529 0.561 0.560 0.629 0.519 0.566 0.700
0.875 0.486 0.516 0.499 0.522 0.521 0.595 0.475 0.525 0.648
1.000 0.473 0.499 0.484 0.506 0.504 0.580 0.457 0.507 0.625

To tabulate these normalized stress-intensity factors, cubic-spline interpolation provides estimates of K,
at equally spaced (¢) crack-front locations in the range 0 < ¢ < /2. Table 5 lists normalized K;-values for
the selected surface crack/material combinations under remote tension loading. Because the calculation of J
occurs at a larger number of crack-front locations than the tabulated data reflects, the tables do not
necessarily capture the exact maximum-minimum values of K;,. For example, Fig. 20(c) shows a maximum
value of K, = 0.857 at ¢ = 0.024 for E,/E; = 1, whereas Table 5 lists a maximum value of K, = 0.823 at
¢ =0.0.

7.2. Bending load

Figs. 22-24 show Kj,-values for selected crack geometries under remote through-bending load. For some
crack geometries, bending causes crack-face nodes to penetrate the crack plane, thereby producing negative
stress-intensity factors. Figures and tables for specimens under bending omit the unrealistic negative values.

Figs. 22-24 show that an increase in crack depth causes stress-intensity factors at the deepest part of the
crack to decrease, which reflects the decreased stress from bending. As expected, the decrease in K, is most
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pronounced in the soft material, and smallest in the stiff material. For crack geometry a/c = 1/3 (Fig. 22),
the stress-intensity factor near the cracked surface increases slightly as crack depth increases. The increase is
largest in the soft material, and smallest in the stiff material. When a/c = 1 (Fig. 23) and a/c = 2 (Fig. 24),
the stress-intensity factor near the cracked surface decreases slightly with crack depth. The decrease is again
largest in the soft material, and smallest in the stiff material.

In Figs. 22-24, for a constant value of a/¢, the variation in stress-intensity factor near the cracked surface
is not monotonic with increasing a/c, whereas K, at the deepest point of the crack decreases monotonically
with increasing a/c. Near the cracked surface, the stress intensity increases when the crack geometry
changes from a/c = 1/3 to 1 (from Figs. 22, 23), but decreases when the geometry changes from a/c = 1 to
2 (from Figs. 23, 24). At the deepest point of the crack, the value of K;, decreases for each increase in crack
depth, i.e. from a/c =1/3 to 1 to 2 (Figs. 22-24). When a/c = 1/3 and a/t = 0.8, Fig. 22(c), the stress-
intensity factor reaches its maximum value at a point along the crack-front between the cracked surface and
the deepest point on the crack front.

Table 6 lists normalized K;-values for the selected surface crack/material combinations under bending
load. Dashes in the table replace otherwise negative stress-intensity factors. Cubic-spline interpolation
again yields estimates of K}, at evenly-spaced (¢) crack-front locations in the range 0 < ¢ < /2.

7.3. Thermal loading

The material properties and thermal boundary conditions for analyses performed here follow those used
by Erdogan and Wu (1996) as described in Section 2. At crack-front locations interior to the specimen,
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Fig. 23. (a) Normalized K;-values along a crack-front loaded in remote bending, with a/c =1, E;/E; = 0.2, 5 and 1, and a/t = 0.2,
(b) a/t =0.5, and (c) a/t = 0.8.

Egs. (39) and (41) here produce normalized K;-values using the plane strain conversion. We omit stress-
intensity factors at the free surface (¢ = 0) (see discussion in Section 6.3).

Fig. 25(a)—(c) shows normalized stress-intensity factors, K;,, for surface cracks under thermal loading,
where the crack geometry includes three ratios of a/c, and a fixed crack depth of a/7 = 0.2. Table 4 lists the
material properties, and Fig. 8 illustrates the thermal gradient where the temperature at the cracked surface,
Ty, equals 5, 10 and 20 times the temperature at the uncracked face, 75. As the ratio of crack depth to crack
length, a/c, becomes larger, the variation in stress-intensity factor drops more steeply from a maximum
near ¢ = 0 to a minimum at 2¢)/n = 1. As a/c increases from 1/3 to 1 to 2, the magnitude of K}, at the
deepest point of the crack, 2¢/n = 1, decreases monotonically. The value of K, near the cracked surface
increases as a/c grows from 1/3 to 1, and then decreases as a/c grows from 1 to 2. Table 7 lists normalized
K;-values for the selected surface crack/material combinations under thermal loads.

8. Summary and conclusions

This paper describes a domain integral formulation suitable to compute J-integral values along 3-D
crack fronts in fracture specimens and components constructed of isotropic, functionally graded materials
(FGMs). Within a finite element setting, material property values are specified at the model nodes with
standard isoparametric interpolations to define integration point values. This approach coupled with the
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Fig. 24. (a) Normalized K;-values along a crack-front under remote bending, with a/c =2, E;/E; =0.2, 5 and 1, and a/t =0.2,
(b) a/t = 0.5, and (c) a/t = 0.8.

proposed domain integral thus accommodates effectively arbitrary, smooth gradations of material
properties. The proposed numerical procedures to evaluate the domain integral use conventional quan-
tities generated in a finite element solution and may thus be implemented in a post-processor. The present
study explores the numerical implementation with applications to mode-I configurations in 2-D and 3-D
having linear-elastic response and subjected to thermomechanical loading. For simple 2-D configurations,
the available analytical solutions for an edge crack loaded remotely by tension and by temperature
gradients support verification of stress-intensity factors derived from J-values computed with the pro-
posed domain integral. In 3-D surface crack configurations, the displacement correlation technique yields
pointwise values of stress-intensity factors along crack fronts for verification of corresponding factors
computed with the domain integral procedure. The discussions also address mesh refinement levels re-
quired to resolve the solution gradients ahead of the crack-front in FGMs, to obtain path independence
of the J-values, and to evaluate various contributions of the domain integral. These results demonstrate
the utility and accuracy of using the proposed domain integral to derive 2-D and 3-D stress-intensity
factors for FGMs.

A parametric study provides stress-intensity factors along crack fronts derived using the proposed
domain integral for plates containing semi-elliptical surface cracks. This initial set of 3-D stress-intensity
factors covers a practical range of crack sizes, aspect ratios and gradations of isotropic material pro-
perties (elastic modulus and coefficient of thermal expansion). Loadings considered include remote ten-
sion, bending and through-thickness temperature gradients. All configurations reflect mode-I conditions
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Table 6
Normalized stress-intensity factors, K;,, along the crack front for bending loads
aje 2¢/n Bending
a/t=0.2 a/t=0.5 ajt=0.8
E,/E, E,/E, E,/E
0.2 1.0 5.0 0.2 1.0 5.0 0.2 1.0 5.0
1/3 0.000 1.261 0.684 0.364 1.461 0.758 0.377 1.572 0.856 0.433
0.125 1.160 0.680 0.387 1.141 0.710 0.417 1.028 0.752 0.494
0.250 1.141 0.721 0.434 0.939 0.699 0.476 0.682 0.676 0.570
0.375 1.136 0.762 0.482 0.787 0.687 0.533 0.442 0.597 0.635
0.500 1.121 0.793 0.525 0.651 0.661 0.579 0.250 0.494 0.667
0.625 1.104 0.816 0.562 0.537 0.629 0.612 0.098 0.375 0.656
0.750 1.086 0.830 0.588 0.453 0.597 0.632 - 0.263 0.605
0.875 1.073 0.837 0.603 0.403 0.576 0.641 - 0.181 0.546
1.000 1.068 0.838 0.608 0.384 0.565 0.643 - 0.143 0.510
1 0.000 1.884 1.067 0.607 1.805 1.025 0.570 1.712 1.001 0.568
0.125 1.614 1.012 0.599 1.286 0.908 0.582 0.984 0.815 0.594
0.250 1.380 0.934 0.591 0.878 0.762 0.581 0.480 0.592 0.581
0.375 1.210 0.876 0.589 0.603 0.643 0.576 0.187 0.405 0.543
0.500 1.070 0.827 0.587 0.398 0.535 0.560 0.054 0.232 0.465
0.625 0.968 0.788 0.586 0.259 0.447 0.539 - 0.087 0.359
0.750 0.899 0.762 0.585 0.171 0.385 0.520 - - 0.251
0.875 0.853 0.743 0.583 0.117 0.341 0.502 - - 0.155
1.000 0.838 0.735 0.582 0.098 0.324 0.494 - - 0.113
2 0.000 1.211 0.723 0.409 1.121 0.675 0.380 1.047 0.637 0.362
0.125 1.057 0.683 0.415 0.792 0.587 0.397 0.569 0.496 0.381
0.250 0.881 0.615 0.400 0.511 0.474 0.384 0.240 0.334 0.354
0.375 0.727 0.548 0.381 0.298 0.364 0.357 0.049 0.180 0.293
0.500 0.601 0.487 0.359 0.156 0.270 0.321 - 0.060 0.206
0.625 0.504 0.434 0.336 0.068 0.198 0.283 - - 0.115
0.750 0.430 0.389 0.312 0.015 0.145 0.247 - - 0.030
0.875 0.378 0.352 0.291 - 0.109 0.217 - - -
1.000 0.358 0.337 0.281 - 0.097 0.205 - - -

Dashes replace negative stress-intensity factors caused by interpenetration of crack faces.

(geometry, boundary conditions and loadings) with material properties that vary only in the thickness
direction. The computed stress-intensity factors are presented in a standard nondimensional form for
surface cracks using both graphical and tabular formats. The presence of the material property grada-
tions introduces some unusual trends in K;-values along the crack fronts (compared to those for surface
cracks in homogenous materials as characterized by the Newman-Raju solutions). Moreover, unlike
configurations with homogenous material properties, the locations of maximum J and maximum K; do
not necessarily coincide in the presence of material property gradations. The present set of 3-D solutions,
while not exhaustive, does provide insights into the expected complexities of surface crack behavior in
FGMs.

Our ongoing work considers applications of the proposed domain integral to compute J-values in
surface cracks for metal-ceramic FGMs that undergo elastic—plastic deformations. The preliminary results
again show good path independence of the J-values. Such J-values may prove useful to characterize the
intensity of elastic—plastic crack-front fields in FGM specimens.
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Fig. 25. Normalized K;-values for a specimen under thermal loading with a/t=0.2, T,/7, =5, 10 and 20, and (a) a/c =1/3,
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(b) a/c =1, and (c) a/c = 2. Material properties are listed in Table 4.

Table 7

Ea,k (=

Eyayk,

Normalized stress-intensity factors, K;,, along the crack front for thermal loading

alt 2¢/n Thermal loading
ale=1/3 aje=1 aje=2
LT /T T/
5 10 20 5 10 20 5 10 20
0.2 0.000 - - - - - - - - -
0.125 0.393 0.884 1.866 0.582 1.309 2.765 0.395 0.888 1.874
0.250 0.377 0.847 1.789 0.476 1.072 2.264 0.310 0.698 1.473
0.375 0.362 0.814 1.719 0.394 0.888 1.874 0.231 0.520 1.097
0.500 0.341 0.767 1.619 0.324 0.730 1.541 0.168 0.377 0.796
0.625 0.318 0.716 1.513 0.270 0.609 1.286 0.122 0.274 0.577
0.750 0.299 0.673 1.420 0.234 0.526 1111 0.089 0.201 0.424
0.875 0.287 0.645 1.361 0.210 0.472 0.997 0.068 0.154 0.325
1.000 0.281 0.633 1.336 0.201 0.453 0.957 0.062 0.139 0.292

Table 4 lists material properties, and Fig. 8 shows a schematic of the temperature distribution. Dashes replace stress-intensity factors

in the boundary layer (see Section 6.3).
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